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Abstract. In this paper we continue the study, from Frittaion, Steila and Yokoyama

(2017), on size-change termination in the context of Reverse Mathematics. We analyze

the soundness of the SCT method. In particular, we prove that the statement “any

program which satisfies the combinatorial condition provided by the SCT criterion is

terminating” is equivalent to WO(ω3) over RCA0.

1. Introduction

Informally, a recursive definition of a function has the SCT property if, in every infinite

sequence of calls, there is some infinite sequence of parameter values which is weakly
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decreasing and strictly decreasing infinitely many times. If the parameter values are well-

ordered, as in the case of natural numbers with the natural ordering, there cannot be such

a sequence. Thus, the SCT property is a sufficient condition for termination.

The SCT property concerns the semantics of the program. In [13] Lee, Jones and

Ben-Amram provided an alternative property, equivalent to being SCT, but which can be

statically verified from the definition of the program. Indeed, they proved the following:

Theorem 1.1 (SCT criterion). Let G be a description of a program P . Then G is SCT

iff every idempotent G ∈ cl(G) has an arc x
↓−→ x.

Here, cl(G) is a set of graphs, which can be extracted directly from the code of the

program P . We refer to Section 2.3 for definitions.

The SCT criterion leads us to consider two distinct, although classically equivalent,

properties. For convenience of exposition, we use the following terminology. See Section

2 for definitions.

Definition 1.1. • G is MSCT (Multipath-Size-Change terminating) if G is SCT.

• G is ISCT (Idempotent-Size-Change terminating) if every idempotent G ∈ cl(G)

has an arc x
↓−→ x.

With this terminology at hand, we outline the following three-step argument from [13]

to prove the termination of a first order functional program P :

• Verify that P is ISCT;

• Apply the SCT criterion to prove that P is MSCT;

• Derive the termination of P from the fact that “every MSCT program terminates”.

Since the Ackermann function is ISCT provably in RCA0 (see Section 2.4), a natural

question arises: in which theory can we carry out the above argument? Specifically, in

which theory can we prove the SCT criterion? Similarly, in which theory can we prove

that every MSCT program terminates?

It is clear that this cannot be done in weak theories, such as RCA0, which do not prove

the termination of the Ackermann function. In [7] we studied the strength of the SCT

criterion. We proved that the SCT criterion follows from a special instance of Ramsey’s

theorem for pairs, which turns out to be equivalent to IΣ0
2 over RCA0. In the present

paper we focus our attention on the second question, i.e., the soundness of the MSCT

principle. Moreover, we investigate in which theory we can prove directly the termination

of programs which are ISCT, without applying the SCT criterion. We thus consider the

following two soundness statements.

Theorem 1.2 (ISCT (resp. MSCT) Soundness). Let G be a safe description of a program

P . If G is ISCT (resp. MSCT) then P is terminating.

Following standard notation (e.g., [16]), WO(α) states that the linear ordering α is

well-ordered. In this paper we show that over RCA0,

• ISCT soundness = WO(ω3) ≥ MSCT soundness > WO(ω2),
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where ω2 = ωω and ω3 = ωω
ω
.

One direction of the SCT criterion is provable in RCA0. That is, within RCA0, every

MSCT description is also ISCT. Therefore, provably in RCA0, ISCT soundness implies

MSCT soundness. Moreover, over RCA0 + IΣ0
2, where ISCT and MSCT are equivalent

notions, we have

• MSCT soundness = WO(ω3).

It is still an open question whether the inequality is strict over RCA0:

Question 1.2. Is MSCT soundness equivalent to WO(ω3) over RCA0?

As a consequence of our analysis, we provide ordinal bounds for the termination of first

order functional programs which are ISCT and, in particular, a new proof of primitive

recursive bounds for the tail-recursive ISCT programs.

1.1. Reverse mathematics. Reverse mathematics is a research program in mathemat-

ical logic and foundations of mathematics. We refer to Simpson [16] and Hirschfeldt [11]

for a general overview. The goal is to assess the relative logical strength of theorems from

ordinary (non set-theoretic) mathematics, thus making sense of statements like Theorem

A is stronger than Theorem B or Theorem A and Theorem B are equivalent. This program

is carried out in second-order arithmetic, a formal system for natural numbers and sets

of natural numbers, which is expressive enough to accommodate large parts of ordinary

mathematics. Given a theorem A, one looks for the minimal subsystem Ξ needed to prove

A, that is, A follows from Ξ and all the axioms from Ξ are provable from A over a base

system Ξ0.

The most important subsystems of second-order arithmetic are obtained by restricting

comprehension and induction to some class Γ of formulas.

• Γ-Comprehension: ∃X∀n(n ∈ X ↔ ϕ(n)), for ϕ ∈ Γ

• Γ-Induction: ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1))→ ∀nϕ(n), for ϕ ∈ Γ

In practice, one uses comprehension to define a set and induction to verify that the set

thus defined has the required properties.

Let us briefly recall the definition of Σ0
n formulas. Bounded quantifiers are of the form

∀x < t and ∃x < t, with x being a number variable and t a number term. A formula

ϕ is Σ0
n if it is of the form ∃x1∀x2 . . . Qxnθ, where the xi’s are number variables and all

quantifiers in θ are bounded. Similarly, ϕ is Π0
n if it is of the form ∀x1∃x2 . . . Qxnθ, with

xi’s and θ as above. A formula is arithmetical if it is Σ0
n for some n. Note that θ can

contain set variables.

In this paper we are mainly concerned with the base system RCA0 (Recursive Compre-

hension Axiom), the system ACA0 (Arithmetical Comprehension Axiom), the induction

schemes IΣ0
n (induction for Σ0

n formulas), and the principles WO(ωn) (ωn is well-ordered),

where n is a standard natural number.

RCA0 consists of the usual first-order axioms of Peano arithmetic, without induction,

plus comprehension and induction, restricted to ∆0
1 and Σ0

1 formulas respectively. Roughly,

RCA0 proves that all computable sets exist. ACA0 is obtained from RCA0 by adding
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arithmetical comprehension (comprehension for all arithmetical formulas). Roughly, ACA0

proves that the Turing jump of every set exists.

The statements IΣ0
n and WO(ωn) form two intertwined hierarchies below ACA0:

ACA0 −→ IΣ0
n+3 −→ IΣ0

n+2

↓ ↓
WO(ωn+3) −→ WO(ωn+2) 6←− RCA0

The implications in the picture are strict. It is known that WO(ωω) is equivalent,

over RCA0, to the totality of the (relativized) Péter-Ackermann function A2
f [12]. In this

paper we show that WO(ω3) is equivalent to the totality of all Anf , where Anf is a natural

generalization of A2
f to n arguments.

As mentioned earlier, the original proof of the SCT criterion makes use of Ramsey’s

theorem for pairs [14]. This theorem states that for every coloring, on the edges of the

complete graph on countably many nodes, in k colors, there exists an infinite homogeneous

set. I.e., there exists an infinite subset of the nodes such that any two elements in this

subset are connected in the same color. Ramsey’s theorem for pairs, in symbols RT2, is a

key principle in reverse mathematics (e.g., see [16], [11], [3], [4]).

2. SCT framework

2.1. Syntax.

x ∈ Par parameter

f ∈ Fun function identifier

f ∈ Op primitive operator

a ∈ AExp arithmetic expression

::= x | x+ 1 | x− 1 | f(a, . . . , a)

b ∈ BExp boolean expression

::= x = 0 | x = 1 | x < y | x ≤ y | b ∧ b | b ∨ b | ¬b

e ∈ Exp expression

::= a | if b then e else e

d ∈ Def function definition

::= f(x0, . . . , xn−1) = e

P ∈ Prog program

::= d0, . . . , dm−1

A program P is a list of finitely many defining equations f(x0, . . . , xn−1) = ef , where f ∈
Fun and ef is an expression, called the body of f . Let x0, . . . , xn−1 be the parameters

of f , denoted Par(f), and let n be the arity of f , denoted arity(f). Function identifiers

on the left-hand side of each equation are assumed to be distinct from one another. By

Fun(P ) we denote the set of function identifiers occurring in P and by Op(P ) the set of
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primitive operators occurring in P . We usually suppress the reference to P whenever it is

clear from the context. The entry function f0 is the first in the program list. The idea is

that P computes the partial function f0 : Narity(f0) → N.

Example 2.1. The following program computes the well-known Péter-Ackermann func-

tion:

A(x, y) = if x = 0 then y + 1

else if y = 0 then A(x− 1, 1)

else A(x− 1, A(x, y − 1))

2.2. Semantics. The standard semantics for first order functional programs is denota-

tional semantics (see, e.g., Lee, Jones and Ben-Amram [13]). Another possible choice is

operational semantics (as defined in, e.g., [8]). In our framework we find it natural and

convenient to interpret programs as term rewriting systems.

Notation: We use u,v for tuples of natural numbers and s, t for tuples of terms.

In general a term rewriting system is a set of rules, i.e., objects of the form s→ t for s, t

terms. We build up our terms by using natural numbers and function symbols (function

identifiers and primitive operators). In particular, terms do not contain if-then.

t ∈ Term ::= u ∈ N | f(t, . . . , t)

Boolean expressions are decidable and we can think of a boolean expression b with pa-

rameters in x0, . . . , xn−1 as a primitive operator whose intended interpretation is a boolean

function [[b]] : Nn → 2. For instance, we read b(x0, . . . , xn−1) as b(x0, . . . , xn−1) = 0. Sym-

bols such as 0, 1,+,− have the intended interpretation. We do not distinguish notationally

between these symbols and their interpretation, relying on context to distinguish the two.

For instance, x + 1 is an expression if x is a parameter, or the successor of x if x is a

natural number.

Given an expression e with parameters in x = x0, . . . xn−1 and a tuple u ∈ Nn, we want

to evaluate the expression e on u and return a term e(u) (1). We can easily define e(u)

by recursion on the construction of e as follows:

• xi(u) = ui, (xi + 1)(u) = ui + 1, and (xi − 1)(u) = ui − 1 if ui > 0, 0 otherwise.

• If e = f(e0, . . . , ek−1), then e(u) = f(e0(u), . . . , ek−1(u)).

• If e = if b then e0 else e1, then

e(u) =

e0(u) if [[b]](u) = 0

e1(u) otherwise.

Every subterm of a given term t has a position σ. We can use sequences of natural

numbers to determine the position of a subterm. For instance, if t = f(g(2), 4), then t has

position 〈〉 and g(2) has position 〈0〉. Formally:

1Ultimately, this comes down to substitute x with u in the unique arithmetic subexpression of e which

is determined by the boolean tests for u. That is, if e0, . . . , ek−1 are the maximal arithmetic subexpressions

of e, in the sense that they are not proper subexpressions of any arithmetic expression of e, then we have

e(u) = ei[x/u], where i is uniquely determined.
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Definition 2.2 (position). Let s be a subterm of t and σ be a sequence of natural numbers.

We say that the position of s in t is σ (in symbols pos(s, t) = σ) if t = f(t0, . . . , tk−1) and

one of the following holds:

• s = t and σ = 〈〉
• s is a subterm of ti and σ = 〈i〉apos(s, ti).

We write t|σ for the unique subterm of t in position σ (if it exists).

Similarly, every subexpression of a given expression e has a position τ ∈ N<N, and we

write e|τ for the unique subexpression of e in position τ (if it exists). Formally:

Definition 2.3 (position). Let e, e′ be expressions and τ ∈ N<N. We say that e′ has

position τ in e if one of the following holds:

• e = e′ and τ = 〈〉;
• e = f(e0, . . . , en−1), τ = 〈i〉aτ ′, and e′ has position τ ′ in ei;

• e = if b then e0 else e1, τ = 〈i〉aτ ′ with i < 2, and e′ has position τ ′ in ei.

Fix an an interpretation [[·]] of all primitive operators, that is, for all f ∈ Op let

[[f ]] : Narity(f) → N.

We are now ready to define, given a program P , a term rewriting system TP .

Definition 2.4 (rules and reduction). A rule is of the form f(u) → ef (u) for f ∈ Fun

or f(u) → [[f ]](u) for f ∈ Op. A one-step reduction t →P s is given by replacing the

leftmost subterm f(u) of t according to the rule. We write s = t[f(u)]ρ, where ρ is the

position of f(u) in t.

Note that →P is decidable.

Example 2.5. Suppose we want to compute A(2, 3), the value of the Péter-Ackermann

function at (2, 3). According to the definition we have:

A(2, 3)→ A(1, A(2, 2))→ A(1, A(1, A(2, 1)))→ . . .

Use →∗P to denote the reflexive transitive closure of →P .

Definition 2.6 (state transition). For f, g ∈ Fun and τ ∈ N<N, define a state transition

(f,u)
τ−→ (g,v) by ef |τ (u) = g(s) and si →∗P vi for all i < arity(g).

For every subterm s of ef (u) there exists a unique position τ in ef such that s = ef |τ (u).

We say that 〈τ, f, g〉 is a call from f to g and write τ : f → g. It is worth noticing that

there are only finitely many τ ’s and hence finitely many calls τ : f → g. This apparently

obvious fact is essential for the SCT criterion (from ISCT to MSCT) and for the SCT

soundness.

We can extend the state transition relation to (f,u)
τ−→ (g, t) by the same definition.

The relations →∗P and
τ−→ are Σ0

1. In particular, the latter is Σ0
1 by BΣ0

1.

Definition 2.7 (reduction sequence). A reduction sequence of P is a sequence of terms

t0 →P t1 →P t2 →P . . .. Write t ↓ s if there exists a reduction sequence t = t0 →P t1 →P

t2 →P . . .→P tl = s.
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Remark 2.1. Our definition of reduction is deterministic (at each step there is at most

one possible reduction). It easily follows that for every t there exists a unique reduction

sequence starting with t.

Lemma 2.2. Given terms t0, t1, t2, if t0 ↓ t1 and t0 ↓ t2 then t0 →∗P t1 →∗P t2 or

t0 →∗P t2 →∗P t1 (This includes the case t1 = t2). Additionally if t1 and t2 are natural

numbers, then t1 = t2.

Proof. By induction on the length of the reduction sequences and exploiting the fact that

the reduction is deterministic. �

Definition 2.8 (termination). We say that P terminates on u if f(u) ↓ v for some

natural number v, where f is the entry function of P . We say that P is terminating if P

terminates on every input. We also write f(u) = v for f(u) ↓ v and f(u) ↓ if there exists

a v such that f(u) ↓ v.

2.3. Size-change graphs. We briefly recall the main definitions from [7].

A size-change graph G : f → g is a finite set of constraints between the parameters of

f and the parameters of g. Constraints are of the form x > y and x ≥ y, where x ∈ Par(f)

and y ∈ Par(g). Formally, we represent size-change graphs G : f → g as bipartite graphs

with edges of the form x
↓−→ y (a strict arc denoting the constraint x > y) and x

⇓−→ y (a

non-strict arc denoting the constraint x ≥ y) with x ∈ Par(f) and y ∈ Par(g). We write

x→ y ∈ G as a shorthand for x
↓−→ y ∈ G ∨ x ⇓−→ y ∈ G.

To G : f → g we can associate a transition relation
G−→ consisting of state transitions

(f,u)
G−→ (g,v) for all u,v satisfying the given constraints. Note that

G−→ is decidable.

Moreover, given G0 : f → g and G1 : g → h, we can define the composition G0;G1 :

f → h such that
G0−−→ ◦ G1−−→⊆ G0;G1−−−−→.

The composition of two edges x
⇓−→ y and y

⇓−→ z is the edge x
⇓−→ z. In all other cases

the composition of an edge, from x to y, with an edge from y to z is the edge x
↓−→ z.

The composition G0;G1 consists of all compositions of edges x → y ∈ G0 with edges

y → z ∈ G1, with the exception of x
⇓−→ z if G0;G1 contains x

↓−→ z. Formally:

E = {x ↓−→ z : ∃y ∈ Par(g) ∃r ∈ {↓,⇓} ((x
↓−→ y ∈ G0 ∧ y

r−→ z ∈ G1)

∨ (x
r−→ y ∈ G0 ∧ y

↓−→ z ∈ G1))}

∪{x ⇓−→ z : ∃y ∈ Par(g)(x
⇓−→ y ∈ G0 ∧ y

⇓−→ z ∈ G1) ∧ ∀y ∈ Par(g)

∀r, r′ ∈ {↓,⇓} ((x
r−→ y ∈ G0 ∧ y

r′−→ z ∈ G1) =⇒ r = r′ = ⇓)}.

A description G of a program P consists of size-change graphs Gτ : f → g for any call

τ : f → g of P . We say that G is safe if
τ−→⊆ Gτ−−→ for all calls τ of P .

Definition 2.9. G is MSCT if for every infinite multipath M = G0, G1, . . ., i.e., an

infinite sequence of size-change graphs with Gi : fi → fi+1 and Gi+1 : fi+1 → fi+2,

contains an infinite descent, i.e., a sequence of the form xt → xt+1 → xt+2 → . . . →
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xi → . . . with xi ∈ Par(fi) such that for all i we have xi → xi+1 ∈ Gi and for infinitely

many i we have xi
↓−→ xi+1 ∈ Gi.

Let cl(G) denote the closure of G under composition.

Definition 2.10. G is ISCT if every idempotent G : f → f in cl(G), i.e., G2 = G,

contains a strict arc of the form x
↓−→ x for some x ∈ Par(f).

2.4. Péter-Ackermann. As Ben-Amram shows in [1], the Péter-Ackermann function is

ISCT.

A(x, y) = if x = 0 then y + 1

else if y = 0 then τ0 : A(x− 1, 1)

else τ1 : A(x− 1, τ2 : A(x, y − 1))

Note that we have three calls τi (i < 3) which are safely described by the following size-

change graphs:

x

y

x

y

↓

G1 : A→ A

x

y

x

y

⇓

↓

G2 : A→ A

The size-change graph G1 safely describes both calls τ0 : A(x − 1, 1) and τ1 : A(x −
1, A(x, y− 1)). In particular, notice that in the call τ1 the parameter value x decreases no

matter what the value of the expression A(x, y − 1) is. Finally, the size-change graph G2

safely describes the call τ2 : A(x, y − 1).

Actually, we can prove that Péter-Ackermann is MSCT within RCA0.

Lemma 2.3 (RCA0). A is MSCT.

Proof. Every multipath contains either infinitely many G1 or cofinitely many G2. In the

first case we have an infinite descent in the parameter x and in the second case we have

an infinite descent in the parameter y. �

These remarks highlight that both ISCT Soundness and MSCT Soundness are not

provable over RCA0.

3. The standard proof requires ACA0

We discuss the standard proof of SCT soundness. This section is self-contained.

Theorem 3.1 (Lee, Jones, Ben-Amram). If P is MSCT then P is terminating.

Proof sketch. Let G be a safe description of a program P and suppose that P does not

terminate on u. Then there exists an infinite sequence of state transitions (f,u)
τ0−→

(f1,u1)
τ1−→ (f2,u2) . . .. Consider the corresponding multipath in G. As G is MSCT, there

exists an infinite descent. By safety, we have an infinite descending sequence of natural

numbers. A contradiction. �
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We will show that this proof requires ACA0. The key step in the proof is the existence

of an infinite state transition sequence, i.e., the existence of an infinite branch in the so

called activation tree.

Definition 3.1 (activation tree). Let P be a program with entry function f . Given

u ∈ Narity(f), the activation tree Tu
P consists of all finite state transition sequences

starting with (f,u), i.e., sequences of the form:

(f,u)
τ0−→ (f1,u1)

τ2−→ . . .
τk−1−−−→ (fk,uk).

The activation tree is Σ0
1 and finitely branching. If P is MSCT, then every branch of the

tree is finite (since we are considering values in N, they cannot decrease infinitely many

times). Therefore, we have:

Proposition 3.2 (RCA0). If P is MSCT, then Tu
P has no infinite branches for all u.

Proof. From the definitions. The reader is encouraged to fill in the details. �

One can show that P terminates iff Tu
P is finite for all u ∈ Narity(f). With some effort,

this can be done in RCA0.

Proposition 3.3 (RCA0). P terminates on u iff Tu
P is finite.

Proof. Let T = Tu
P . Suppose first that T is finite. By bounded Σ0

1-comprehension the

tree T exists. By Σ0
1-induction on T we show that for all σ ∈ T , if last(σ) = (g,v), then

g(v) ↓. Write t ↑ if there is no natural number v such that t ↓ v. Note that if t ↑ then

there exists a subterm h(s), with h ∈ Fun, and w ∈ Nn, such that s ↓ w and h(w) ↑. This

can be proved by Π0
1-induction on a given term t such that t ↑. In fact, the least subterm

s of t (in any linear ordering of subterms of t which respects the subterm relation), such

that s ↑, is as desired. Suppose σ is an end-node. If g(v) ↑ then eg(v) ↑, so there exists

a subterm h(s) as above. Then (g,v)
τ−→ (h,w) for some τ , so σ is not an end-node. The

case when σ is not an end-node can be proved similarly.

In the other direction, suppose that P terminates on u with witness f(u) = t0 →P

t1 →P . . . →P tl = v ∈ N. Let T be the set of all subterms appearing in the reduction

sequence. We claim that if g(v) ∈ T and (g,v)
τ−→ (h,w), then also h(w) ∈ T . Let g(v),

with eg(v)|τ = h(t) and ti →∗P wi, be given. Take the maximum i ≤ l such that g(v)

appears in ti. Then ti+1 is obtained by reducing g(v), so h(t) is a subterm of ti+1. Since

the program terminates, there exists a tuple of natural numbers n such that ti →∗P ni. By

Lemma 2.2, we have w = n. Since, moreover, the reduction is deterministic, h(w) must

be a subterm of tj for some i < j ≤ l, hence h(w) ∈ T . This proves the claim. Now, given

σ ∈ T , one can show by induction that every initial segment of σ consists of pairs (g,v)

with g(v) ∈ T . It easily follows that T is finite. �

Proposition 3.4 (ACA0). If P does not terminate on u, then Tu
P has an infinite branch.

Proof. Suppose that P does not terminate on u. Then T = Tu
P is infinite by Proposition

3.3. Note that the tree T exists within ACA0. Since T is finitely branching, it has an

infinite branch by König’s lemma (which is provable in ACA0). �
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Proposition 3.5 (RCA0). The statement “If P does not terminate on u, then Tu
P has an

infinite branch” implies ACA0.

Proof. We argue in RCA0. By [16, Lemma III.1.3], it is enough to show that the range of

any one-to-one function exists. Let f : N→ N be given. Say that x ∈ N is an f -true stage

(or simply true) if f(x) < f(y) for all x < y. It is well-known that, provably in RCA0, we

can define the range of f from any infinite set of f -true stages (see, e.g, [6]). We show

that the set of true stages exists. We may safely assume that 0 is true.

Define P as follows:

g(x, t, y, z) = if f(z) < f(y) then z

else g(x+ 1,⊥, y, g(x+ 1,>, x+ 1, x+ 2))

The idea is that g(x, t, y, z) tests the truth of y by seeking the least v ≥ z such that

f(v) < f(y).

Claim 3.5.1. If y ≤ x < z and g(x, t, y, z) = v then z ≤ v and f(v) < f(y).

Proof. By Π0
1-induction on the length of a reduction sequence. �

By the claim, P does not terminate on u = (0,>, 0, 1). Let (g,u) → (g,u1) →
. . . (g,ux) → be an infinite branch in Tu

P , where ux = (x, tx, yx, zx). By Σ0
0-induction

it is easy to show that yx ≤ yx+1 and yx ≤ x < zx for all x.

We now show that for all x ∈ N,

x is true if and only if tx = >,

so we can define the set of true stages by ∆0
1-comprehension (indeed ∆0

0).

Suppose x is true and tx = ⊥. Then ux = (x,⊥, y, g(x,>, x, x + 1)) and by the claim

above we have that f(zx) < f(x) with x < zx, so x is not true, a contradiction.

Suppose that tx = > and x is false. We have that yx = x. Let v > x be least such that

f(v+1) < f(x). Consider uv = (v, t, y, z). Now uv = (v,>, v, v+1) or uv = (v,⊥, y, v+1)

with x ≤ y ≤ v. By the minimality of v we have f(z) < f(y) in both cases. Thus there is

no state transition from uv, a contradiction. �

Remark 3.6. Within our syntax, primitive operators do not appear in boolean expres-

sions. We can modify P as follows:

g(x, t, y, z) = h(f(y), f(z), z, g(x+ 1,⊥, y, g(x+ 1,>, x+ 1, x+ 2)))

h(a, b, c, d) = if b < a then c else d

This program computes the same function. Observe that this program does not have a

safe SCT description.

4. Lower bound

In this section we show that ISCT soundness implies WO(ω3) over RCA0. To this end,

we consider the (relativized) fast growing hierarchy.
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4.1. Fast Growing Hierarchy. We formalise ε0 in RCA0 as in Definition 2.3 from [15]:

Definition 4.1. The set E of notations of ordinals < ε0 and order < on E is taken as

follows:

(1) If α0 ≥ · · · ≥ αn ∈ E , then ωα0 + · · ·+ ωαn ∈ E .

(2) ωα0 + · · ·+ ωαn < ωβ0 + · · ·+ ωβm if and only if:

(a) n < m and αi = βi for all i ≤ n, or:

(b) there is i ≤ min{n,m} with αj = βj for all j < i and αi < βi.

We use 0 to denote the empty sum, 0 < α for all α 6= 0, 1 = ω0, n =

n︷ ︸︸ ︷
1 + · · ·+ 1, ω = ω1,

ω0(α) = α, ωd+1(α) = ωωd(α) and ωd = ωd(1).

Remark 4.1. To show that E is well defined in RCA0, one need only observe that the

corresponding characteristic function is primitive recursive.

Definition 4.2 (fundamental sequence). For α = ωα0 + · · · + ωαn ∈ E and x ∈ N, take

0[x] = 0, (α+ 1)[x] = α, and for α limit ordinal:

(1) If αn = β + 1, then α[x] = ωα0 + · · ·+ ωαn−1 + ωβ · x,

(2) If αn is a limit, then α[x] = ωα0 + · · ·+ ωαn[x].

For well-ordered α < ε0, the fast growing hierarchy relative to f : N → N would be

defined as follows:

F0,f (x) = f(x),

Fα+1,f (x) = F
(x+1)
α,f (1),

Fλ,f (x) = Fλ[x],f (x) if γ is limit,

where F (n) is the n-times iterate of a function F , defined by F (0)(x) = x and F (n+1)(x) =

F (F (n)(x)).

Remark 4.2. In the usual definition of the fast growing hierarchy we have Fα+1(x) =

F
(x+1)
α (x). For our purposes we use this slightly modified version (see Proposition 4.5).

Remark 4.3. The primitive recursive functions are exactly the functions elementary

recursive in some Fn with n < ω. Let Fα be the set of functions elementary recursive

in Fα. The multiply recursive functions (functions defined by transfinite recursion on ωn

for some n ∈ N) are exactly the functions in
⋃
α<ωω Fα. Ben-Amram proved that SCT

programs compute exactly the multiply recursive functions.

We follow standard practice in defining the fast growing hierarchy in terms of its canon-

ical computation. Define the following function Kf : (ε0)
∗ × N → (ε0)

∗ × N. Intuitively,

this function represents one step in the computation of Fα,f (x). Let

Kf (α0 . . . αn, x) =


(α0 . . . αn−1, f(x)) if αn = 0

(α0 . . . αn−1

x+ 1 times︷ ︸︸ ︷
β . . . β , 1) if αn = β + 1

(α0 . . . αn−1αn[x], x) if αn is a limit
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and Kf (〈〉, x) = (〈〉, x). Notice that (α0 . . . αn, x) simply represents the term

Fα0(. . . (Fαn(x) . . . ).

Ff is the result of repeated applications of the ‘computation steps’ (when it exists).

Definition 4.3. Let Fα,f (x) = µy.∃l K(l)
f (α, x) = (〈〉, y). We call the sequence {K(i)

f (α, x)}i∈N
the computation of Fα,f (x). Say that the computation is finite if there exists l such that

K
(l)
f (α, x) = (〈〉, y).

One can show that this definition is equivalent to usual ∆0
1 definitions as in, e.g. [9]

(adapted to take into account the different initial function and slightly different condi-

tions).

Proposition 4.4 (RCA0). For all α < ε0,

WO(ωα)⇐⇒ (∀f : N→ N)Tot(Fα,f ).

Proof. Take h(α0 . . . αn, x) = ωα0 + · · ·+ωαn and h(〈〉, x) = 0. Note that the computation

of Fα,f (x) is finite iff βi = 0 for some i, where βi = h(K
(i)
f (α, x)). Note also that βi > βi+1

as long as βi > 0.

First suppose that ωα is well-founded. Then the sequence {h(K
(i)
f (α, x))}i∈N reaches

zero, so the computation is finite.

For the other direction, we assume that ωα is not well-founded and prove that Fα,f is

not total. First, a definition.

Definition 4.4 (Maximal coefficient). By primitive recursion on the construction of α <

ε0, define mc(α) ∈ N as follows. Let mc(0) = 0. If α = ωα0 · a0 + · · · + ωαn · an, where

α0 > · · · > αn and ai > 0, then

mc(α) = max{mc(αi), ai}.

Given an infinite descending sequence

ωα > α0 > α1 > α2 > . . . ,

take f(x) > mc(αx+1) + x + 1 and strictly increasing. Assume, for a contradiction, that

that the computation of Fα,f (f(0)) is finite.

To ease notation, take

(σi, xi) = K
(i)
f (α, f(0)) and βi = h(σi, xi).

We aim to show that βi > 0 for all i, in contradiction with the finiteness of the computation

of Fα,f (f(0)). Note that β0 = ωα and x0 = f(0). One can show that:

(1) if γ > β is a limit, then γ[mc(β) + 1] > β;

(2) Fβ,f (y) ≥ f(y), hence F
(y)
β,f (1) > y for all β ≤ α, y which occur in the computation of

Fα,f (f(0));

(3) if l is the smallest such that K
(l)
f (β, y) = (〈〉, z), then K

(l)
f (σβ, y) = (σ, z).
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By primitive recursion let us define an increasing sequence (ai) of natural numbers as

follows. Set a0 = 0. If σai ends with a zero or σai = 〈〉, let ai+1 = ai + 1. Otherwise, let

a ≥ ai be the smallest such that σa ends with a successor β + 1, and set ai+1 = a+ l+ 1,

where l is the least such that

K
(l)
f (

i+1︷ ︸︸ ︷
β . . . β, 1) = (〈〉, z).

Claim 4.4.1. For every i > 0 we have:

βai > αi

and

xai ≥ f(i).

From the claim, it follows that βi > 0 since βi ≥ βai > αi > 0, as desired.

Proof of the claim. Induction on i. For i = 0, the claim follows directly. For the induction

step, assume that the claim is true for i.

Case 1. ai+1 = ai+ 1. Since βi > 0, the inequalities follow directly from the definitions:

βai+1 = βai − 1 ≥ αi > αi+1

and

xai+1 = f(xai) ≥ f(f(i)) ≥ f(i+ 1).

Case 2. Let a and β be those from the definition of ai+1. By the definition of a, σj

ends with a limit for all j ∈ [ai, a). Therefore, by the induction hypothesis and notice (1),

βa > αi and xa ≥ f(i). Since σa is of the form γ0 . . . γlβ + 1, σa+1 has the form:

γ1 . . . γl

≥mc(αi+1)+1︷ ︸︸ ︷
β . . . β

i+1︷ ︸︸ ︷
β . . . β,

so βai+1 ≥ βa[mc(αi+1) + 1] > αi+1 by notice (1) and (3). By notice (2) and (3), xai+1 ≥
F

(i+1)
β,f (1) ≥ f(i+ 1). This ends the proof of the claim. �

4.2. Generalizing Péter-Ackermann. Recall that for f : N→ N and α < ε0 we have:

F0,f (x) = f(x)

Fα+1,f (x) = F
(x+1)
α,f (1)

Fλ,f (x) = Fλ[x],f (x)



14 FRITTAION, PELUPESSY, STEILA, AND YOKOYAMA

Note that Fx,f (y) = Af (x, y), where Af is the Péter-Ackermann function relativized to f

(see [12]). We now generalize Af (x, y) as follows. For n > 0 and f : N→ N, let

Anf (x1, x2, . . . , xn, y) = if x1 = . . . = xn = 0 then f(y)

else if x1 > 0 ∧ x2 = . . . = xn = 0 then

τ1 : Anf (x1 − 1, y, x3, . . . , xn, y)

...

else if xi > 0 ∧ xi+1 = . . . = xn = 0 then

τi : Anf (x1 . . . , xi − 1, y, xi+2, . . . , xn, y)

...

else if xn−1 > 0 ∧ xn = 0 then

τn−1 : Anf (x1, . . . , xn−1 − 1, y, y)

else if xn > 0 ∧ y = 0 then

τn : Anf (x1, x2, . . . , xn − 1, 1)

else

τ0 : Anf (x1, . . . , xn−1, xn − 1, τn+1 : Anf (x1, . . . , xn, y − 1))

In the interest of readability, let x = x1, . . . , xn and α(x) = ωn−1x1 + . . . + xn. For

xn > 0, let x− 1 = x1, . . . , xn−1, xn − 1 and observe that α(x− 1) = α(x)− 1. Then:

Anf (x, y) =


f(y) if α(x) = 0

Anf (x′, y) if α(x) is limit and α(x′) = α(x)[y]

Anf (x− 1, 1) if α(x) is successor and y = 0

Anf (x− 1, Anf (x, y − 1)) if α(x) is successor and y > 0

We now show the relationship between the fast growing hierarchy and the generalized

Péter-Ackermann function.

Proposition 4.5 (RCA0). For all n > 0 and f : N→ N,

Anf (x, y) = Fα(x),f (y).

That is, for all x, y, z, Anf (x, y) = z iff there exists l such that K
(l)
f (α(x), y) = (〈〉, z).

Proof. Write A for Anf and α for α(x). Say that A(x, y) = z in l-many steps if there exists

a reduction sequence A(x, y) = t0 → t1 . . . → tl = z. We also write A(x, y) →(l) z. On

the other hand, K
(l)
f (α, y) = (〈〉, z) iff there exists a sequence (α, y) = k0 → k1 → . . . →

kl = (〈〉, z) where ki+1 = Kf (ki). We also write k0 →(l) kl. We shall use the fact that

(τ, x)→(l) (ρ, y) iff (στ, x)→(l) (σρ, y) for all σ.

In one direction, we prove by Π0
1-induction on l that, for all x, y, z, if A(x, y) = z

in l-many steps then (α, y) →(l) (〈〉, z). This is a relatively straightforward, if tedious,

verification. Let us consider the case xn, y > 0. The other cases are similar and actually
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simpler. Since xn > 0 we have that α = α(x) is a successor. Note that α− 1 = α(x− 1),

where x− 1 = x1, . . . , xn−1, xn − 1. Let

A(x, y)→ A(x− 1, A(x, y − 1))→(l0) A(x− 1, y′)→(l1) z

with l = l0 + l1 +1. Then A(x, y−1) = y′ in l0-many steps and A(x−1, y′) = z in l1-many

steps. By the induction hypothesis, (α, y − 1) →(l0) (〈〉, y′) and (α − 1, y′) →(l1) (〈〉, z).
Since (α, y − 1)→ ((α− 1)(y), 1), it follows that ((α− 1)(y), 1)→(l0) (〈〉, y′). Therefore we

have:

(α, y)→ (α− 1(α− 1)(y), 1)→(l0) (α− 1, y′)→(l1) (〈〉, z)

with l0 + l1 + 1 = l.

For the other direction, we show by Π0
1-induction on l that, for all x, y, z, if (α, y)→(l)

(〈〉, z), then A(x, y) = z in less than l2-many steps. The l2 bound is not optimal but does

the job. Once again, consider the case xn, y > 0 so that α = α(x) is a successor and

α− 1 = α(x− 1) with x− 1 = x1, . . . , xn−1, xn − 1. Suppose that

(α, y)→ ((α− 1)(y+1), 1)→(l0) (α− 1, y′)→(l1) (〈〉, z).

Then l = l0 + l1 + 1. As before, note that (α, y − 1) → ((α − 1)(y), 1). By induction,

A(x, y − 1) = y′ within ≤ (l0 + 1)2-many steps and A(x − 1, y′) = z within ≤ l21-many

steps, where x− 1 = x1, . . . , xn−1, xn − 1. Therefore we have a reduction sequence

A(x, y)→ A(x′, A(x, y − 1))→ . . .→ A(x′, y′)→ . . .→ z

of length ≤ (l0 + 1)2 + l21 + 1 ≤ l2. Note in fact that li > 0. �

Corollary 4.6 (RCA0). The following holds:

• WO(ωω
ω
)⇐⇒ (∀n > 0)(∀f : N→ N)Tot(Anf )

• WO(ωω)⇐⇒ (∀f : N→ N)Tot(A2
f )

Proof. This follows from Proposition 4.4 and Proposition 4.5. �

4.3. From soundness to WO(ω3). We can now give the desired lower bounds.

Definition 4.5 (description An of Anf ). It is convenient to define An on parameters

x1, . . . , xn, xn+1. That is, we write xn+1 for y. Define An = {A1, . . . , An+1} as follows.

For every 0 < j ≤ n+ 1, let Aj be the size-change graph with arcs xj
↓−→ xj and xi

⇓−→ xi

for all 0 < i < j.

Note that An does not depend on f .

Proposition 4.7 (RCA0). For all n ∈ N and f : N → N, An is a safe ISCT description

of Anf . More precisely, Ai is a safe description of τi for all 0 < i ≤ n+ 1, and An is a safe

description of τ0.

Proof. It is easy to see that An is a safe description. Let us show that every G ∈ cl(An) has

an arc x
↓−→ x. Let G = G0;G1; . . . ;Gk−1 with Gj ∈ An for every j < k. Let 0 < i ≤ n+ 1

be least such that Ai ∈ {G0, . . . , Gk−1}. Then xi
↓−→ xi ∈ G. �
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Note that the size-change graphs defined in this description could be extended to other

size-change graphs, which also safely describe P , by adding to Aj the arcs y
⇓−→ xj+1,

y
⇓−→ y and xi

⇓−→ xi for every j < i ≤ n. Anyway for our goals the description above is

more suitable.

Corollary 4.8 (RCA0). ISCT soundness implies WO(ω3).

Proof. This follows from Corollary 4.6. �

Remark 4.9. Note that for any standard n > 0, RCA0 proves that An is MSCT. In

particular, MSCT soundness implies WO(ωω) by Corollary 4.6. It turns out that proving

MSCT for all An requires IΣ0
2.

Proposition 4.10 (RCA0). The following are equivalent:

• IΣ0
2;

• For all n > 0, An is MSCT.

Proof. For the forward direction, let M = G0, G1, . . . be a multipath with Gi ∈ An. Let

0 < i ≤ n + 1 be least such that Ai appears infinitely often. Then there is an infinite

descent starting with xi.

For the reversal, one can adapt the proof of [7, Theorem 6]. For the sake of completeness,

we briefly describe the main idea. Starting point is that IΣ0
2 is equivalent to the Strong

Pigeonhole Principle (see e.g., [7]) which states that given a coloring in k many colors of

the natural numbers, there exists the set of colors which appear infinitely many times in

this coloring. Therefore it is sufficient to show that for every finite coloring c : N → k

the set I∞ = {i < k : (∃∞x)c(x) = i} exists. As in the proof of [7, Theorem 6] we can

define for all x ∈ N the set Ix of guesses at stage x. That is, every I ∈ Ix is a non-empty

subset of k and I ⊆ I∞ iff I ∈ Ix for infinitely many x. Let n + 1 = 2k − 1. Then we

have n+ 1-many non-empty subsets of k, say I1, . . . , In+1. We can assume that |Ii| < |Ij |
implies i > j. Now define a multipath M = G0, G1, . . . in An by letting Gx = Ai, where i

is least such that Ii is a guess at stage x of maximal size. By the assumption there exists

an infinite descent starting from some parameter xi with 0 < i ≤ n + 1 at some point t.

We claim that Ii = I∞. Since there are infinitely many arcs of the form xi
↓−→ xi, we have

that Ii ⊆ I∞. Now suppose for a contradiction that Ii 6= I∞. Then there exists a stage

x > t with a guess I of size bigger than Ii. Therefore, by definition, there exists j < i

such that Gx = Aj and so in Gx there is no arc from xi to xi, a contradiction. �

5. Upper bound

In this section we aim to show the following:

Theorem 5.1 (RCA0). WO(ω3) implies ISCT soundness.

From the proof of this result we then extract a bound for the length of computations

of tail-recursive ISCT programs (see Subsection 5.3).
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Definition 5.1. We call proper a term of the form f(u) with f ∈ Fun and u ∈ Narity(f).

We also say that a reduction t→P s = t[f(u)]ρ is proper if f ∈ Fun.

Proof idea: Given an infinite reduction sequence

f(u) = t0 →P t1 →P . . .→P tn →P . . .

we assign ordinals

ω3 > α0 > α1 > . . . > αn > . . .

Actually, since we also consider reductions involving primitive operators, we will define a

non-increasing sequence of ordinals which decreases infinitely many times. For the details,

one can go to the proof. Here we just outline some ideas that hopefully will make the

proof easier to follow.

As in Tait [19], we want to assign to each term tn a finite set of ordinals γ0, γ1, . . . in

ωω. Each γi corresponds to a subterm of tn of the form g(s) with g ∈ Fun. To tn we assign

the ordinal

αn =
⊕
i

βi < ω3,

where

βi =

ωγi · a if g(s) is proper

ωγi otherwise

Here a is the the maximum size of ef for f ∈ Fun. The size of an expression is defined

as the number of function symbols. The idea is that a one-step reduction gives rise to at

most a-many subterms of the form g(s) with g ∈ Fun. We use the following basic fact from

ordinal arithmetic without further notice: if γ > γ0, γ1, . . . then ωγ >
⊕

i ω
γi . Therefore,

if a term t with assigned ordinal γ gives rise to a-many subterms s0, s1, . . . with ordinals

γ0, γ1, . . ., γ > γi if ti is proper and γ ≥ γi otherwise, then ωγ · a >
⊕

i βi, where βi is

defined as above.

Example 5.2. Consider the following illustrative example. To the sequence

A(2, 3)→ A(1, A(2, 2))→ A(1, A(1, A(2, 1)))→ . . .

we assign the ordinals

ωω2+3 · 2 > ωω2+3 + ωω2+2 · 2 > ωω2+3 + ωω2+2 + ωω2+1 · 2 > . . .

This is a descending sequence in ω3. Here, a = 2. For a descending sequence in ωω use

base b = 3 instead of ω. We have bω
2

= ωω. Replace ωωx+ya with ωx · by · a.

Following Ben-Amram [2], there exists a bound m ∈ N such that every finite multi-

path M = G0, . . . , Gn, . . . of length ≥ m is foldable, where M is foldable if it can be

decomposed into three multipaths M = ABC with H = B = C = BC, where M is the

composition of the graphs in M . Note that H is idempotent. In particular, the source

and the target functions of H coincide. The idea is to assign to each subterm of tn of the

form g(s) with g ∈ Fun an ordinal of the form γ(u) < ωω, where u = u0,u1, . . . is a finite

sequence of tuples appearing in a state transition sequence (f0,u0)
G0−−→ (f1,u1)

G1−−→ . . . of
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length < m. In a one-step reduction we might either extend or contract a finite state tran-

sition sequence (f0,u0)
G0−−→ (f1,u1)

G1−−→ . . . into another finite state transition sequence

(g0,v0)
H0−−→ (g1,v1)

H1−−→ . . .. The second case arises when the corresponding multipath

becomes foldable. In the first case, the sequence v = v0,v1, . . . properly extends the

sequence u = u0,u1, . . .. In the second case, the sequence v is lexicographically smaller

than the sequence u. It turns out that we can map sequences u of bounded length to

ordinals γ(u) in ωω so that in both cases γ(u) > γ(v). For the sake of exposition we say

that the sequence u is above the sequence v.

The existence of a bound on the length of foldable multipaths is an easy application of

finite Ramsey’s theorem. We thus have the following:

Lemma 5.2 (RCA0). Let G be a finite set of size-change graphs. Then there exists m ∈ N
such that every multipath M in cl(G) of length ≥ m is foldable.

Proof. Finite Ramsey’s theorem for pairs. �

Note that the above lemma applies to every G. The ISCT assumption ensures that the

idempotent size-change graph H in the definition of foldable multipath contains a strict

arc of the form x
↓−→ x.

In the next subsection we show how to map sequences u of bounded length to ordinals

γ(u) < ωω so that if u is above v then γ(u) > γ(v). The reader may skip this part on a

first reading.

5.1. Aboveness. Let p ∈ N be fixed.

Definition 5.3. Given a sequence u ∈ N<p, let up ∈ (N∪{ω})p be the sequence of length

p which is obtained from u by adding p− length(x)-many ω. That is,

up := uaω(p−length(u)),

where for any natural number n, ω(n) is the sequence of length n with constant value ω.

It is easy to see that u is above v if and only if up >lexp vp, where lexp is the standard

lexicographic order of (ω + 1)p.

Definition 5.4. Given a sequence u ∈ ω<p, define

γp(u) :=

p−1⊕
i=0

ωp−1−i(2 · up(i)).

Lemma 5.3 (RCA0). Let p ∈ N and u ∈ N<p. For any j < p,

p−1⊕
i=j

ωp−1−i(2 · up(i)) < ωp−j · 2.

Proof. We prove it by induction on p − j + 1. If j = p − 1, the first sum is empty and

the thesis follows. Assume that the claim holds for j + 1, we prove it for j. Note that
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ωp−1−j(2 · up(j)) ≤ ωp−j . Moreover by induction hypothesis

p−1⊕
i=j+1

ωp−1−i(2 · up(i)) < ωp−j−1 · 2.

Therefore

p−1⊕
i=j

ωp−1−i(2 · up(i)) < ωp−j ⊕ ωp−j−1 · 2 < ωp−j · 2.

�

Lemma 5.4 (RCA0). Let p ∈ ω and u,v ∈ N<p. If u is above v then γp(u) > γp(v).

Proof. If u is above v then up >lexp vp. Therefore there exists j ∈ p such that

(∀i < j)(up(i) = vp(i) ∧ up(j) > vp(j)).

By the lemma above

p−1⊕
i=0

ωp−1−i(2 ·up(i)) ≥
j−1⊕
i=0

ωp−1−i(2 · vp(i))⊕ωp−j(2 · (1 + vp(j))) >

p−1⊕
i=0

ωp−1−i(2 · vp(i)).

�

5.2. From WO(ω3) to soundness. We first give the following definition of stem. Note

that this is made in RCA0.

Definition 5.5. Let t→P s with s = t[f(u)]ρ. For every subterm g(s) of s with g ∈ Fun

there exists a unique position σ of t, called the stem of g(s), such that t|σ = h(t), h ∈ Fun,

and one of the following holds:

• σ ⊥ ρ and g(s) = h(t);

• σ ⊂ ρ and g(s) = h(s). In this case h(t) is not proper and t→P s;

• σ = ρ, and so h(t) = f(u), and g(s) = ef |τ (u) for some τ : f → g. In this case

(f,u)
τ−→ (g, s).

t

ρ

s

ρ
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σ ⊥ ρ

s

ρ

σ

σ ⊂ ρ

s

ρ

σ

σ = ρ

s

ρ = σ

στ

Proof of Theorem 5.1. Let G be a safe ISCT description of a program P , i.e., G is safe for

P and every idempotent graph G ∈ cl(G) contains a strict arc x
↓−→ x.

Suppose we are given an infinite reduction sequence

f0(u0) = t0 →P t1 →P . . .→P tn →P . . .

We will assign ordinals

ω3 > α0 ≥ α1 ≥ . . . ≥ αn > . . .

and prove that αn > αn+1 for infinitely many n. Indeed, we will have αn > αn+1 for every

proper reduction tn →p tn+1. Note that in any infinite reduction sequence there must be

infinitely many proper reductions (exercise).

If m bounds the length of any non-foldable multipath in cl(G) and r is the maximum

arity of f for f ∈ Fun, set p = (m+1) ·r. Let a be the the maximum size of ef for f ∈ Fun.

From now on we identify a sequence u of length < p with the ordinal γp(u) ∈ ωω.
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By primitive recursion we want to define for all n and for every subterm h(t) of tn with

h ∈ Fun a finite multipath M = G0, G1 . . . , Gl−1 in cl(G) of length < m and a sequence

u = u0,u1, . . . ,ul of length < p such that:

(a) (f0,u0)
G0−−→ (f1,u1)

G1−−→ . . .
Gl−1−−−→ (fl,ul), where Gi : fi → fi+1.

(b) If h(t) is proper, then (fl,ul) = (h, t).

(c) If h(t) is not proper, we also specify τ : fl → h such that (fl,ul)
τ−→ (h, t).

Note that (fl,ul)
τ−→ (h, t) is a Σ0

1-condition. We assign to every such subterm h(t) the

ordinal ωu if h(t) is not proper, and the ordinal ωu ·a otherwise. Finally, we let αn be the

natural sum of all these ordinals.

Construction.

Stage n = 0. We have only the term f0(u0). Let M be the multipath of length 0

consisting of Par(f0) and u = u0. Conditions (a)–(c) are trivially satisfied.

Stage n+1. Let tn+1 = tn[f(u)]ρ. We can assume by Σ0
1-induction that for every non-

proper subterm h(t) of tn the corresponding τ : fl → h is as above. Let g(s) be a subterm

of tn+1. We want to assign a pair N,v. Let σ be the stem of g(s) and M,u be the pair

associated with h(t) = tn|σ.

Remark 5.5. If σ ⊆ ρ, we can specify τ : fl → g such that (fl,ul)
τ−→ (g, s). In fact,

• if σ ⊂ ρ, i.e., h(t) is not proper, then (fl,ul)
τ−→ (h, t), where τ has been specified

earlier in the construction by (c), and therefore (fl,ul)
τ−→ (g, s). Note in fact that

h = g and t→P s;

• if σ = ρ, i.e., h(t) is proper and equal to f(u), then (fl,ul) = (f,u) by (b), and

therefore (fl,ul)
τ−→ (g, s), where τ is such that g(s) = ef |τ (u).

Case 1. σ ⊥ ρ or g(s) is not proper. Do nothing, i.e., N = M and v = u.

Case 2. σ ⊆ ρ and g(s) is proper, say g(s) = g(w). Consider the multipath MG, where

G is the size-change graph for the call τ : fl → g, where τ is as in the remark above.

Sub-case 1. MG has length < m. Let N = MG, and v = u,w. Note that u is above

v.

Sub-case 2. MG is foldable, say MG = ABC, with H = B = C = BC. Then we fold

M , i.e., we let N = AH. Suppose that B = Gi, . . . , Gj−1. Note that g = fi = fj and

H : g → g. Now, H is idempotent, and so by ISCT contains a strict arc xk
↓−→ xk for some

k, where Par(g) = {x0, x1 . . . , }. We define v according to whether xk
↓−→ xk ∈ H or not.

Let

v = u0, . . . ,ui−1,vi,w,

where the k-element of vi equals the k-element of uj if xk
↓−→ xk ∈ H, and the k-element

of ui otherwise. Note that we have ui ≥ vi coordinate-wise. Also, vi is lexicographically

smaller than ui and therefore u is above v.

Verification.

Let us first check that in all cases N,v satisfy conditions (a)-(c).



22 FRITTAION, PELUPESSY, STEILA, AND YOKOYAMA

Case 1. Clearly (a) holds. The only interesting case is when σ ⊆ ρ. In this case when

g(s) is not proper we have (c) by the remark above.

Case 2. Clearly (b) holds. We need only to check (a).

Sub-case 1. We just need to show that (fl,ul)
G−→ (g,w). This follows from the remark

above and the safety of G.

Sub-case 2. We just need to show that (fi−1,ui−1)
Gi−1−−−→ (g,vi)

H−→ (g,w). The

first state transition follows from the fact that (fi−1,ui−1)
Gi−1−−−→ (g,ui) and ui ≥ vi. The

second state transition follows from the safety of G and the fact that both (g,ui)
BC−−→ (g,w)

and (g,uj)
C−→ (g,w) hold, and H = BC = C.

Claim 5.5.1. For all n, αn ≥ αn+1, and αn > αn+1 for infinitely many n.

For every position σ of a subterm h(t) of tn with h ∈ Fun, let ασ be the ordinal

corresponding to h(t), Sσ be the set of subterms g(s) of tn+1 with stem σ, and βσ be the

natural sum of ordinals corresponding to terms in Sσ. Note the we may have Sσ = ∅.
In such a case let βσ = 0. On the other hand, every subterm g(s) of tn+1 with g ∈ Fun

belongs to some Sσ. Thus αn = ⊕σασ and αn+1 = ⊕σβσ.

We claim that ασ ≥ βσ for every position σ and hence αn ≥ αn+1.

Case 1. If h(t) is not proper, then ασ = ωu and |Sσ| = 1. Say Sσ = {g(s)}. We assign

ordinal ωu if g(s) is not proper, and ωv · a otherwise. In the latter case u is almost above

v, and so ασ > βσ.

Case 2. If h(t) is proper and σ 6= ρ, then ασ = ωu · a, Sσ = {h(t)} and ασ = βσ.

Case 3. If σ = ρ, that is h(t) is the f(u) in the function reduction from tn to tn+1, then

αρ = ωu · a and |Sρ| ≤ a. Note that if ef (u) ∈ N then Sρ = ∅, and so αρ > βρ. Otherwise,

each g(s) in Sρ is either not proper, in which case we assign the ordinal ωu, or proper, in

which case we assign an ordinal ωv · a, where u is almost above v, and so ωu > ωv · a. In

both cases we have αρ > βρ.

Note that Case 1 might occur in any reduction and hence we can have αn > αn+1 even

if the reduction is not proper. However, Case 3 occurs in every proper reduction and

αn > αn+1 for every such reduction. The claim follows. �

In particular Theorem 5.1 shows that any descending sequence of ordinals associated to

some computation of the generalized Péter-Ackermann function Anf (as defined in Section

2.4) is bounded by some ordinal of the form ωω
bn

for some natural number bn. Anyway

such bn depends on the bound on the length of foldable multipaths provided in Lemma

5.2 by an application of the finite Ramsey’s theorem for pairs. Since uniform bounds for

the finite Ramsey’s theorem for pairs are rather large, so are the bounds bn extracted from

our proof. These are definitely larger than ωω
n
, the ordinal which corresponds to Anf (see

Proposition 4.4 and Proposition 4.5).

5.3. Upper bound for tail-recursive programs. In this subsection we consider tail-

recursive programs. A program function definition is tail-recursive is the recursive call
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occurs only once and it is the most external function. For instance:

h(t) = h(f0(t), . . . fn−1(t)).

A program is tail-recursive if every function definition is tail-recursive and there is

no mutual recursion. There exists a direct transition-based translation into transition-

based programs (see, e.g., [10]) and tail-recursive programs are often easy to handle in

implementations.

The goal of this section is to show that the functional programs which are tail-recursive

and ISCT compute exactly the primitive recursive functions. On the one hand, all prim-

itive recursive functions can be computed by simple tail-recursive programs which are

ISCT (e.g. see [18]). On the other hand, Ben-Amram in [1] has already proved that the

first order functional programs defined without nested recursion which are ISCT compute

primitive recursive functions. Since tail-recursive programs do not allow nested recursion

our result is a corollary of [1]. In [18] there is a different proof which uses an analysis of

the intuitionistic proof of the Termination Theorem. As a side result of this analysis, some

large bounds are extracted. By following a completely different approach, which follows

closely the proof of Theorem 5.1, we provide a new proof and we extract the corresponding

bounds.

Proposition 5.6. WO(ωω) implies the termination of every tail-recursive ISCT program.

Proof. We follow the argument of Theorem 5.1, but we assign a different ordinal to every

subterm g(s) of tn. Given a tail-recursive functional program P let {g0, . . . , gk−1} be a

fixed ordering between the functions of P such that for every i < j < k gj does not occur

in the expression defining the function gi (note that such an ordering exists since there is

no mutual recursion in P ).

Given a term gj(t) and u, where j is the index with respect to our fix ordering, we

assign to gj(t) the ordinal ωpj(ω · γ(u) + 1) if gj(t) is proper and the ordinal ωpj(ω · γ(u))

if gj(s) is not proper.

Now following the schema of the verification for the bound as presented in the proof of

Theorem 6.1 we have the following cases:

• If gj(t) is not proper, then ασ = ωpj(ω · γ(u)) and Sσ = {gi(s)} for some i ≤ j. In

both the possible cases for gi(s) we have ασ > βσ, since ω · γ(u) is a limit ordinal.

• If gj(t) is proper and σ 6= ρ then Sσ = {gj(t)}. Therefore ασ = βσ.

• If σ = ρ. If gj(t) is proper, since the program is tail recursive we have in the

worst case that Sσ =
{
f0(t), ...fn−1(t), gj′(f0(t), ..., fn−1(t))

}
for some functions

f0, . . . , fn whose level which respect to our ordering is less than j and j′ ≤ j. Since

f0, . . . fn−1 have index less than j with respect to our fixed ordering, we associate

either ωphi(ω · γ(u)) (if not proper) or ωphi(ω · γ(vi) + 1) (if proper) to them for

some hi < j and some vi such that u is almost above vi. If gj′(f0(t), ..., fn−1(t)) is

not proper we associate ωpj
′
(ω ·γ(u)) to it, otherwise we associate ωpj

′
(ω ·γ(v)+1)

for some v such that u almost above v. Since j ≥ j′ we have ασ > βσ. �
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Now assume that P is a tail-recursive program as above and let gi be the entry func-

tion of P . By the proposition above every computation from g(x0, . . . , xn−1) corresponds

to a descending sequence of ordinals below ωpi+1. We claim that any computation of

gi(x0, . . . , xn−1) has length less than Fpi+2,f (0), for f(x) = 2x+ 2 + max{x0, . . . , xn−1, p}.
To prove this we directly adapt the proof of Proposition 4.4. Note that for every

α ∈ ωpi+1 we have mc(α) ≤ max{ai : i ∈ n} ∪ {p}. Moreover, if v is obtained after a step

from u in the proof of Proposition 5.6, then max{vj : j < p+1} < max{uj : j < p+1}+1,

therefore f(x) > mc(αx+1) + x + 1, as required in the proof of Proposition 4.4. Observe

that the proof of Proposition 4.4 guarantees that for every infinite decreasing sequence αi

we get that every βi is positive. We can straightforwardly derive from this argument that

if the sequence of αi has length n, then we βi is positive for every i < n.

Assume that we have a decreasing sequence of ordinals below ωpi+1 which is derived

from a computation of length greater than Fpi+2,f (0). Hence we would get that the

corresponding βi are positive for every i ≤ Fpi+2,f (0). But this provides a contradiction,

by definition of βi.

Observe that, in general, these bounds seem to be huge. For instance let us consider

the toy-program analyzed in [18]:

f(x, y, temp, exp, z) = if (y = 0) then 1

else if (y = 1) then exp

else τ1 : f(x, y − 1, ∗, τ2 : g(x, y, 0, exp, x), ∗)

g(x, y, temp, exp, z) = if (z = 0) then 0

else if (z = 1) then temp

else τ0 : g(∗, ∗, temp + exp, exp, z − 1)

where ∗ denotes any value. Note that f(x, y, 0, 1, z) computes xy. Every size-change graph

corresponds to some composition of Gτ0 : g → g, Gτ1 : f → f and Gτ2 : f → g.

Gτ0
x

y

temp

exp

z

x

y

temp

exp

z

Gτ1
x

y

temp

exp

z

x

y

temp

exp

z

Gτ2
x

y

temp

exp

z

x

y

temp

exp

z

⇓

↓

⇓

↓

⇓

⇓

⇓

⇓

The idempotent graphs in cl(G) are Gτ0 : g → g and Gτ1 : f → f (since the source and the

target of the other size-change graphs are different). Hence this program is ISCT. Recall

that p is defined to be (m+ 1)r. Note that the maximal arity r for this program is 5, so

p > 5. As we already mentioned, the bound m for the length of the unfoldable multipaths

is provided by an application of the finite Ramsey’s theorem and it is well-known that
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the bounds for the finite Ramsey’s numbers are pretty large for n > 4. Therefore the

bounds extracted from this proof involve functions Fl,f with l much bigger than 5, which

is extremely loose, since F3,i 7→i+1(max{x, y}) is already a bound for the length of the

computations of this program. This can be shown as a direct application of the bound for

the Termination Theorem provided in [5].

6. Conclusion

In this paper we proved that, over RCA0,

• ISCT soundness = WO(ω3) (by Corollary 4.8 and by Theorem 5.1);

• MSCT soundness ≥WO(ω2) (see Remark 4.9).

It is known that IΣ0
2 implies WO(ω2), but does not imply WO(ω3) (see [17, Remark

2.4]). Moreover, WO(ω3) does not imply IΣ0
2 (see [17, Corollary 4.3]). Since IΣ0

2+ MSCT

soundness implies WO(ω3), we can conclude that MSCT soundness > WO(ω2).

Finally, since every MSCT program is also ISCT, provably in RCA0, we have that

WO(ω3) ≥ MSCT soundness. As discussed in the introduction, we leave open whether

the inequality is strict (see Question 1.2). Let An be the generalized Péter-Ackermann

function for the successor function (i.e. f(x) = x+ 1). If we restrict MSCT soundness to

the statement we call MSCT∗ soundness:

∀n(An MSCT =⇒ An terminates),

then we obtain something strictly weaker than WO(ω3), as one can obtain a model which

seperates them, in the following manner:

Starting from a countable, nonstandard model of PA, shorten it (i.e., take an initial

segment) to a model M , such that M |= WO(ωω
n
) if and only if n is standard. In M , the

Strong Pigeonhole Principle SPPn fails for all nonstandard n, but is true for all standard

n. So there exists a coloring in n many colors of the natural numbers for which there does

not exist a set of colors which appear infinitely many times in this coloring.

This is a model such that M |= ∀n(An MSCT =⇒ An terminates) and M |=
∃n(An does not terminate). Indeed, we have that An is MSCT only if n is standard,

as An MSCT implies SSPk, for n = 2k − 2, as shown in the proof of Proposition 4.10.

Therefore, there is a separation between ISCT Soundness and MSCT∗ Soundness. This

suggests that a possible direction, to address Question 1.2, could be to solve the following:

Question 6.1. Is MSCT Soundness equivalent to MSCT∗ Soundness?

Of course the direction from MSCT Soundness to MSCT∗ Soundness is trivial, as the

latter one is a direct corollary of the former one. The vice versa is still open.
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